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Recently, Foulis (Foulis, D. J. (2003). Compressible groups, Mathematica Slovaca
53, 433–455.) characterized compressions on effect rings, which were introduced as
a generalization of unital C*-algebras in the context of ordered abelian groups with
order units. In the present paper, we characterize a class of symmetries on effect rings
and show their relations to compressions. This characterization leads to a generaliza-
tion of the notion of orthosymmetric orthoposets (Mayet, R., Pulmannová, S. (1994).
Nearly orthosymmetric ortholattices and Hilbert spaces, Foundations of Physics 24,
1425–1437.) to symmetric ordered abelian groups with order units.
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1. INTRODUCTION

This paper was inspired by the pioneering work of David Foulis. In (Foulis,
2003), he initiated the study of compressions on partially ordered abelian groups
with order units. This study has been inspired by the important notion of com-
pressions and dilations on B(H ), the set of bounded operators on a Hilbert space
H (Riesz and Nagy, 1955). We recall that if P = P 2 = P ∗ is a projection op-
erator on H , then the mapping JP : B(H ) → B(H ) defined by JP (A): = PAP ,
A ∈ B(H ), is the compression determined by P , and conversely, if D ∈ B(H ) and
A = JP (D) = PDP , then D is called the dilation of A. There are various dilation
theorems (Riesz and Nagy, 1955; Paulsen, 2002), that characterize various classes
of maps into B(H ) as compressions to H of “nicer” maps into B(K), where K is a
Hilbert space containing H . For instance, using the well-known Naimark dilation
theorem, a positive operator valued measure can be dilated to a projection valued
measure.

If P is a projection on H , then the operator S: = 2P − I is a sym-
metry, that is, a selfadjoint unitary operator on H , and there is a one-to-one
correspondence between symmetries and projections. Moreover, if S = 2P − I
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is a symmetry, then the mapping US : B(H ) → B(H ) defined by US(A) = SAS

is an automorphism of B(H ) such that US ◦ US is the identity. Such an automor-
phism is also called a symmetry. Owing to the one-to-one correspondence be-
tween symmetries and projections, every symmetry is generated by a projection.
This suggests a close connection between compressions and symmetries. Sym-
metries play an important role in the foundations of quantum mechanics, see e.g.,
(Wigner, 1959).

Symmetries in the context of orthomodular lattices were introduced by
Mayet (1992), and in the context of orthomodular posets in Mayet and Pulman-
nová, (1994). The notions of orthosymmetric ortholattices (OSOL), respectively
orthosymmetric orthoposets (OSOP) were introduced as an ortholattice (ortho-
poset) in which to every element an automorphism is assigned such that a few
natural axioms hold. It was shown that in the ortholattice (orthoposet) the ortho-
modular law is necessarily satisfied.

In this paper, we introduce the notion of a symmetry of a partially ordered
abelian group G with order unit u. We define symmetries generated by elements
in the unit interval [0, u], and show that that the generators must be principal
elements. In analogy with orthosymmetric orthoposets, we introduce the notion
of a symmetric group, and investigate its properties. It is shown that if G is
generated by an archimedean effect ring R with generative unit 1, in which R+

consists of squares, then G is a symmetric group, and the generators of symmetries
coincide with projections. In addition, if for a projection p, every g ∈ G can be
decomposed into a part g

p
s which is stable under the symmetry Up generated by

p, and a part g
p
a which changes the sign under the action of Up, then Up is of the

form Up(g) = (2p − 1)g(2p − 1), g ∈ G. Applying results from (Foulis, 2003),
connections between symmetries and compressions on archimedean effect rings
are found.

2. BASIC DEFINITIONS

A partially ordered group is an additively written abelian group G with
a positive cone G+, which induces a translation invariant partial order ≤ on G

according to g ≤ h ⇔ h − g ∈ G+. If H is a subgroup of G, then H forms a par-
tially ordered group with the positive cone H+ : = H ∩ G+. An element u ∈ G+

is called an order unit iff for every g ∈ G there is a positive integer n such that
−nu ≤ g ≤ nu. If G = G+ − G+, then G is said to be directed. If G has an order
unit, then G is directed. An element u ∈ G+ is generative if every element g ∈ G+

can be written as a finite sum g = g1 + . . . + gn with 0 ≤ gi ≤ u, i = 1, 2, . . . , n.
If G is directed, then a generative element in G+ is automatically an order
unit in G.
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An effect algebra is a partial algebra (E; ⊕, 0, 1) with a binary partial opera-
tion ⊕ and two nullary operations 0, 1 satisfying the following conditions (Bennett
and Foulis, 1997).

(E1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are

defined and (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a ⊕ a′ = 1.
(E4) If a ⊕ 1 exists, then a = 0

Let E be an effect algebra. We say that a, b ∈ E are orthogonal, written
a ⊥ b, iff a ⊕ b is defined. A partial order can be defined on E by setting a ≤ b

iff there is c ∈ E such that a ⊥ c and a ⊕ c = b. It turns out that if such c exists, it
is unique. We put c = b � a. In this ordering, 0 is the smallest and 1 is the largest
element in E. We also have a ⊥ b iff a ≤ b′.

Recall that an orthoposet is a partially ordered set P with the first and last
elements 0 and 1, respectively, endowed with a unary operation (orthocomple-
mentation) a → a′ such that a ≤ b ⇒ b′ ≤ a′, a′ = (a′)′ = a, a ∨ a′ = 1, and
a ∨ b ∈ P whenever a ≤ b′, i.e., a ⊥ b, for all elements a, b ∈ P . An orthoposet
becomes an orthomodular poset (OMP) iff the orthomodular law is satisfied, i.e.,
a ≤ b ⇒ b = a ∨ (a′ ∧ b). An effect algebra becomes an OMP iff

a ⊕ b = a ∨ b whenever a ⊥ b.

For more details on orthomodular posets see (Pták and Pulmannová, 1991),
on effect algebras (Dvurečenskij and Pulmannová, 2000).

Let G be a partially ordered abelian group with generative element u ∈ G+.
The interval E: = [0, u] ⊂ G+ can be endowed with a structure of an effect
algebra if we define a, b ∈ E, a ⊥ b iff a + b ∈ E and then a ⊕ b = a + b, and
a′ = u − a. An element p ∈ E is called sharp if p ∧ (u − p) = 0 (the glb taken
in E), and p is called principal if x, y ≤ p, x ⊥ y imply x + y ≤ p. A principal
element is sharp. Indeed, assume x ≤ p, x ≤ p′, then x + p ≤ p ⇒ x = 0. An
element p ∈ E is central iff p and p′ are principal and every x ∈ E can be uniquely
written as x = x1 + x2, x1 ≤ p, x2 ≤ p′ (Greechie et al., 1995).

3. SYMMETRIES OF PARTIALLY ORDERED ABELIAN GROUPS

Definition 3.1. Let G be a partially ordered abelian group with a generating
element u ∈ G+. A mapping U : G → G is called a symmetry if

(i) U is an order automorphism of G,
(ii) U (u) = u,

(iii) U ◦ U = idG.



828 Pulmannová

Clearly, for any symmetry U , U (E) = E. Let U : G → G be a symmetry.
Let

SU: = {g ∈ G : U (g) = g} (1)

be the stable part of U (G). Then SU is a subgroup of G (not necessarily directed
nor convex). Clearly u ∈ SU ∩ E and SU ∩ E forms a sub-effect algebra of E.

Definition 3.2. We say that a symmetry Up of G is generated by an element
p ∈ E iff the following conditions hold:

(i) [0, p] ∪ [0, p′] ⊂ SUp
,

(ii) SUp
∩ E � [0, p] × [0, p′], i.e., p is central in SUp

∩ E.

If p generates Up, we say that p is a generator of Up

Lemma 3.3. If p ∈ E generates a symmetry Up, then p is a principal element
in E.

Proof: Let 0 ≤ y, z ≤ p and y + z ≤ u. By (i) of Definition 3.2., y, z ∈ SUp
∩

E, and since by (ii) of Definition 3.2 , p is central in SUp
∩ E, we have y + z ≤ p.

�

Observe that if Sp: = SUp
, Sp′ : = SUp′ , then Sp ∩ E = Sp′ ∩ E. Consequently, if

a symmetry Up is uniquely defined by its generator, then Up = Up′ . Also, for the
symmetry Uu generated by u, we have SUu

∩ E = E, which implies Uu = U0 =
idG.

Definition 3.4 Let G be a partially ordered abelian group with generative element
u ∈ G+. Assume that the set P (E) of principal elements of E forms an orthoposet.
We say that G is a symmetric group if there is a binary operation

U : P (E) × G → G

such that (with U (p, g) denoted by Up(g)) the following holds:

(i) ∀p ∈ P (E), Up: G → G is a symmetry generated by p,
(ii) ∀p, q ∈ P (E), Up ◦ Uq = UUp(q) ◦ Up,

(iii) p, q ∈ P (E), p ⊥ q ⇒ Up ◦ Uq = Up+q .

Acccording to Mayet and Pulmannová (1994), the notion of a symmetric or-
thoposet (OSOP, in short) can be introduced as follows. An OSOP is an orthoposet
P endowed with a binary operation U , satisfying the following axioms, where
U (a, b) is denoted by Ua(b):
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(S1) For every a ∈ P , Ua: P → P is an automorphism of the orthoposet P .
(S2) For every a, b ∈ P , Ua(b) = b iff b = b1 ∨ b2, b1 ≤ a, b2 ≤ a′.
(S3) Ua ◦ Ub = UUa (b) ◦ Ua and Ua ◦ Ua = idP .
(S4) a ⊥ b implies Ua∨b = Ua ◦ Ub.

Lemma 3.5. If P is an OSOP, then P is an orthomodular poset (OMP).

Proof: By (S4), Ua ◦ Ua′ = Ua∨a′ = U1 = idP , which implies, by (S3), that
Ua′ = Ua . Let Ua(b) = b, then by (S2), b = b1 ∨ b2 with b1 ≤ a, b2 ≤ a′. Then
by (S4), Ub(a) = Ub1∨b2 (a) = Ub1 ◦ Ub2 (a). Now b2 ≤ a′ implies a ≤ b′

2, hence
Ub2 (a) = Ub′

2
(a) = a. Similarly, b1 ≤ a implies a′ ≤ b′

1, hence Ub1 (a′) = a′, and
since Ub1 is an automorphism, Ub1 (a) = a. Therefore Ub(a) = a, which means by
(S2) that a = a1 ∨ a2, a1 ≤ b, a2 ≤ b′. We proved that for a, b ∈ P , b = b1 ∨ b2

with b1 ≤ a, b2 ≤ a′ implies a = a1 ∨ a2, a1 ≤ b, a2 ≤ b′. By (Beran, 1984), this
is equivalent to orthomodularity. �

Proposition 3.6. Let G be a partially ordered abelian group with generative
element u ∈ G+ such that P (E) forms an orthoposet. If G is symmetric group
then P (E) is an orthosymmetric orthoposet (OSOP) in the sense of Mayet and
Pulmannová (1994). In particular, P (E) is an orthomodular poset.

Proof: Assume that G is a symmetric group. To prove (S1), S(3) and (S4), it
suffices to prove that U restricted to P (E) × P (E) gives values in P (E).

Let p, q ∈ P (E) and let 0 ≤ x, y ≤ Up(q) be such that x + y ≤ u. Then
Up(x), Up(y) ≤ q, Up(x) + Up(y) = Up(x + y) ≤ u, and since q is principal,
Up(x) + Up(y) ≤ q. Applying Up to both sides, we get x + y ≤ Up(q). This
proves that Up(q) ∈ P (E). Properties (i),(ii) and (iii) restricted to P (E) imply
(S1), (S3) and (S4).

To show (S2), let p, q ∈ P (E) be such that Up(q) = q. Then q = e1 + e2,
e1, e2 ∈ E, e1 ≤ p, e2 ≤ p′. Since p, q ∈ E ∩ Sp, and p is central in E ∩ Sp, we
have q = q ∧ p + q ∧ p′, where the infimum is taken in E ∩ Sp. As for any f ∈
E, f ≤ p, q, we have f ∈ Sp, q ∧ p is the infimum of p, q also in E. Similarly
q ∧ p′ is the infimum of p′ and q in E. From e1 + e2 = q = q ∧ p + q ∧ p′ and
e1 ≤ q ∧ p, e2 ≤ q ∧ p′, we obtain e1 = q ∧ p, e2 = q ∧ p′.

Assume that x, y ∈ E, x, y ≤ q ∧ p, and x + y ≤ u. Then x, y ≤ p, x, y ≤
q, and since p, q are principal, x + y ≤ p, q, hence x + y ≤ p ∧ q. It follows
that p ∧ q is principal, and q = p ∧ q + p′ ∧ q with p ∧ q ≤ p, q ∧ p′ ≤ p′,
p ∧ q, p′ ∧ q ∈ P (E).

Conversely, if q ∈ P (E) is such that q = q1 + q2 with q1 ≤ p, q2 ≤ p′,
q1, q2 ∈ P (E), then by (ii) of Definition 3.2 , Up(q) = Up(q1) + Up(q2) = q1 +
q2 = q.

Notice that by Lemma 3.5 , P (E) is an OMP. �
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4. EFFECT RINGS

Definition 4.1. (Greechie et al., 1995; Foulis, 2004) An effect ring is a ringRwith
a unit 1 such that (R,+) forms a partially ordered abelian group under addition
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with positive cone R+, and the following conditions hold for all a, b ∈ R+:

(i) ab = ba ⇒ ab ∈ R+.
(ii) aba ∈ R+.

(iii) aba = 0 ⇒ ab = ba = 0.
(iv) (a − b)2 ∈ R+.
(v) 1 ∈ R+.

Define G(R) := R+ − R+ to be the additive group generated by R+ and
understand that G(R) is the directed partially ordered abelian group with positive
cone G(R)+: = R+. Define E: = [0, 1] ⊂ R+.

Example 4.2. LetR be a unital C*-algebra,R+: = {aa∗ : a ∈ R}.R is an effect
ring, G(R) is the additive group of selfadjoint elements of R, and 1 is a generative
order unit in G(R).

An element p in an effect ring R is called a projection if p ∈ R+ and
p = p2. The set of all projections in R is denoted by P (R). If p ∈ P (R), then
p′: = 1 − p ∈ P (R). (indeed, by (iv) and (v) of the above definition, (1 − p)2 =
1 − p ∈ R+). Observe that 1 − p ∈ R+ implies p ≤ 1, hence P (R) ⊂ E. The
set P (R) forms an orthomodular poset (OMP)(Greechie et al., 1995).

Lemma 4.3. In an effect ring R the following holds:

(i) For x ∈ E, x ≤ p, p ∈ P (R) iff pxp = px = xp = x.
(ii) p ∈ P (R) iff p is principal in E iff p is sharp in E.

Proof: (i) Observe that if p ≤ x ≤ 1, then p ≤ pxp ≤ p by (ii) of Definition 4.1,
which implies p = pxp, whence px = xp = pxp = p. If x ≤ p, then p′ ≤ x ′,
p′ = 1 − p ⇒ (1 − p) = (1 − p)(1 − x) = 1 − x − p + px ⇒ x = px. Simi-
larly we obtain x = xp. Hence x = xp = pxp = px. Conversely, if x = pxp =
xp = px, then 0 ≤ p(1 − x)p = p − pxp = p − x, hence x ≤ p.

(ii) Assume p = p2. If 0 ≤ x, y ≤ p and x + y ≤ 1, then by part (i), x =
pxp, y = pyp, hence x + y = pxp + pyp = p(x + y)p ≤ p. This proves that a
projection is principal, hence sharp in E.

Observe that 0 ≤ p, 1 − p and p(1 − p) = (1 − p)p implies by (i) of
Definition 4.1 that p(1 − p) ≥ 0. If p is sharp, then p ∧ (1 − p) = 0, and
since p(1 − p) = (1 − p)p = p − p2 = (1 − p) − (1 − p)2, we have p − p2 ≤
p, 1 − p, so that p = p2. �

Recall that a partially ordered abelian group G is said to be archimedean if
whenever x, y ∈ G are such that nx ≤ y for all positive integers n, then x ≤ 0, and
G is said to be unperforated if nx ≥ 0 for some positive integer n implies x ≥ 0.
Note that any unperforated partially ordered abelian group must be torsion-free
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as an abelian group. Notice that if R is archimedean, then G(R) is archimedean,
too. According (Goodearl, 1986), G(R) is unperforated.

Theorem 4.4. Let R be an archimedean effect ring with no element x �= 0 with
x2 = 0, and with R+: = {a2: a ∈ G(R)}. Define, for p ∈ P (R),

Up(x): = (2p − 1)x(2p − 1), x ∈ G(R). (2)

Then Up is a symmetry of G(R) generated by p. In addition, the following condi-
tion is fufilled:

(AS) ∀g ∈ G(R), g = gs + ga , Up(gs) = gs , Up(ga) = −ga .

Proof: We have to check conditions (i) – (iii) of Definition 3.1.

(i) Additivity of Up is clear.

Up(x) = 0 ⇔ (2p − 1)x(2p − 1) = 0

⇔ Up(0) = x ⇔ x = 0.

(ii) (2p − 1)1(2p − 1) = 4p − 2p − 2p + 1 = 1.
(iii) Up ◦ Up(x) = (2p − 1)((2p − 1)x(2p − 1))(2p − 1) = x.

This implies that Up is injective. From Up ◦ Up(x) = x (by (iii)), we conclude
that Up is surjective. Hence Up is a group automorphism.

Let g ∈ G(R)+, then g = x2 for some x ∈ G(R). We have

Up(g) = (2p − 1)x2(2p − 1) = (2p − 1)x(2p − 1)(2p − 1)x(2p − 1)

= Up(x)2 ≥ 0.

We proved so far that Up is an order preserving automorphism of G(R). It is
easy to see that Up(G(R)+) = G(R)+.

Now we have to check conditions of Definition 3.2.

(i) Let 0 ≤ x ≤ p. By Lemma 3.3 (i), x = px = xp = pxp. Therefore
(2p − 1)x(2p − 1) = x. Similarly, if 0 ≤ x ≤ p′, then xp′ = p′x = x,
so that (2p′ − 1)x(2p′ − 1) = x, and since 2p′ − 1 = 1 − 2p, we get
Up(x) = x.

(ii) Assume x ∈ E, x = x1 + x2 with x1 ≤ p, x2 ≤ p′. Then Up(x) =
Up(x1) + Up(x2) = x1 + x2 = x. Conversely, let x ∈ E be such
that Up(x) = x. This yields x = (2p − 1)x(2p − 1) = 4pxp − 2xp −
2px + x, which entails 4pxp − 2xp − 2px = 0. Multiplying the last
equality by p from the right and from the left, and using the fact that
G(R) is torsio-free, we obtain, respectively, pxp = xp and pxp = px,
so xp = px = pxp. We can write
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x = pxp + p′xp′ + p′xp + pxp′,

and owing to px = xp, the latter two terms equal 0. Therefore

x = pxp + p′xp′, pxp ≤ p, p′xp′ ≤ p′.

It remains to prove condition (AS). Every g ∈ G(R) can be written as

g = pgp + p′gp′ + pgp′ + p′gp.

Put gs = pgp + p′gp′, ga = pgp′ + p′gp. Then Up(gs) = gs , while Up(ga) =
(2p − 1)(pgp′ + p′gp)(2p − 1), and by direct computation we obtain that
Up(ga) = −ga . �

Theorem 4.5. Let an effect ring R satisfy conditions of Theorem 4.4. Then
G(R) with p → Up, p ∈ P (R) is a symmetric group.

Proof: We have to check conditions (i)–(iii) of Definition 3.4 Condition (i)
follows from Theorem 4.4

(ii) Let p, q ∈ P (R). Ten

Up ◦ Uq(g) = (2p − 1)(2q − 1)g(2q − 1)(2p − 1),

Up(q) = (2p − 1)q(2p − 1) = 4pq − 2qp − 2pq + q,

(2Up(q) − 1) = 2(2p − 1)q(2p − 1) − 1 = (2p − 1)(2q − 1)(2p − 1),

(2p − 1)(2q − 1)g(2q − 1)(2p − 1)

= (2p − 1)(2q − 1)(2p − 1)

×[(2p − 1)g(2p − 1)](2p − 1)(2q − 1)(2p − 1)

= (2Up(q) − 1)(2p − 1)g(2p − 1)(2Up(q) − 1)

⇒ Up ◦ Uq(g) = UUp(q) ◦ Up(g) ∀g ∈ G(R).

(iii) If p ⊥ q, then Up(q) = q, hence by (ii), Up ◦ Uq(g) = Uq ◦ Up(g), and
since p ⊥ q implies pq = 0, we obtain (2p − 1)(2q − 1) = −2p −
2q + 1, while 2(p + q) − 1 = 2p + 2q − 1, so Up ◦ Uq = Up+q . �

Theorem 4.6. Let an effect ringR satisfy conditions of Theorem 4.4 and suppose
that 1 is a generative unit in G(R). Then every symmetry on G(R), generated by
an element p ∈ G(R) and satisfying condition (AS), is of the form

Up(g) = (2p − 1)g(2p − 1)

where p ∈ P (R).
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Proof: Let Up be a symmetry generated by p. By Lemma 3.3, p ∈ P (R) =
P (E). For x ∈ E, x belongs to Sp iff x = x1 + x2 with 0 ≤ x1 ≤ p, 0 ≤ x2 ≤ p′,
equivalently, iff x = pxp + p′xp′. This implies that Sp ∩ E = {x ∈ E: Up(x) =
x} = {x ∈ E: (2p − 1)x(2p − 1) = x}.

Take g ∈ G(R) arbitrary. Then g = g+ − g−, g+, g− ∈ G(R)+. Since 1
is generative, we may write g+ = ∑n

i=1 ai , g− = ∑m
j=1 bj , where ai, bj ∈ E

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Now pg+p = ∑n
i=1 paip and p′g+p′ =∑m

i=1 p′aip
′. Similar equalities, with ai’s replaced by bj ’s, hold for g−.

It follows that Up((pg+p) + (p′g+p′)) = pg+p + p′g+p′ = (2p − 1)(pg+p +
p′g+p′)(2p − 1), and similarly, Up((pg−p) + (p′g−p′)) = pg−p + p′g−p′ =
(2p − 1)(pg−p + p′g−p′)(2p − 1), where the last equalities may be verified by
direct computation.

We also have pg+p′ = ∑n
i=1 paip

′, p′g+p = ∑n
i=1 p′aip and pg−p′ =∑m

j=1 pbjp
′, p′g−p = ∑m

j=1 p′bjp, which yields Up(pg+p′ + p′g+p) =
−pg+p′ − p′g+p = (2p − 1)(pg+p′ + p′g+p)(2p − 1) and Up(pg−p′ +
p′g−p) = −pg−p′ − p′g−p = (2p − 1)(pg−p′ + p′g−p)(2p − 1).

We can write g = pgp + p′gp′ + pgp′ + p′gp′. Putting gs : = pgp + p′gp′,
ga: = pgp′ + p′gp, we have g = gs + ga , and from the previous part it follows
that Up(g) = Up(gs) + Up(ga) = gs − ga = (2p − 1)g(2p − 1). �

5. SYMMETRIES AND COMPRESSIONS

Following definitions were introduced in Foulis (2004).

Definition 5.1. Let G be a partially ordered abelian group with order unit u and
unit interval E = [0, u]. A mapping J : G → G is called a retraction on G iff:

(i) J is additive;
(ii) J is order preserving;

(iii) J (u) ≤ u;
(iv) if a ∈ G with 0 ≤ a ≤ J (u), then J (a) = a;
(v) J is idempotent.

Notice that if u is generative, then condition (v) in Definition 5.1 is redundant
[(Foulis, 2004), Lemma 2.5]. If J is a retraction on G, then J (u) is called the focus
of J (Foulis, 2003). By [(Foulis, 2003), Lemma 2.3], if p = J (u) is a focus of a
retraction, then p is a principal element of E.

Definition 5.2. The retraction J :G → G is a compression if for all k ∈ G,
0 ≤ k ≤ u, J (k) = 0 implies g ≤ u − J (u).

Let J and I be retractions on G. Then J and I are quasicomplementary iff
for all g ∈ G+, J (g) = g ⇔ I (g) = 0, and J (g) = 0 ⇔ I (g) = g. If J and I
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are quasicomplementary, then J and I are compressions, and if p is the focus of
J , the focus of I is u − p.

Let R be an effect ring, for every p ∈ P (R), the mapping J (g) = pgp is a
retraction (Foulis, 2004). Moreover, J ′(g) = p′gp′ is a retraction as well, and J

and J ′ are quasicomplementary, hence they are compressions.

Theorem 5.3. (Foulis, 2004) [Theorem 3.6] Let R be an archimedean effect
ring, suppose that 1 is a generative order unit in G(R), and let J : G(R) → G(R)
be a retraction with p: = J (1). Then p ∈ P (R) and J (g) = pgp for all g ∈ G(R).

Putting together the statements of Theorem 4.6 and Theorem 5.3, we obtain
the following results.

Theorem 5.4. Let R be an effect ring satisfying conditions of Theorem 4.4
and suppose that 1 is a generative order unit in G(R). Then G(R) is a com-
pressible group and every compression is of the form Jp(g) = pgp for some
p ∈ P (R). For every g ∈ G(R) and p ∈ P (R), we have g = Jp(g) + Jp′ (g) +
[g − Jp(g) − Jp′ (g)]. Defining Up(g): = Jp(g) + Jp′ (g) − [g − Jp(g) − Jp′ (g)],
we obtain a symmetry with the stable part g

p
s : = Jp(g) + Jp′ (g), and the alternat-

ing part gp
a : = g − Jp(g) − Jp′ (g). With the mapping U ((p, g): P (R) × G(R) →

G(R), G(R) becomes a symmetric group, where symmetries are given by
Up(g) = (2p − 1)g(2p − 1).

Conversely, consider G(R) as a symmetric group with the symmetries
Up(g) = (2p − 1)g(2p − 1), p ∈ P (R). For every e ∈ G(R), 0 ≤ e ≤ 1, the sta-
ble part of e with respect to Up is of the form e

p
s = e1 + e2, where e1 ≤ p, e2 ≤ p′.

Then the mapping Jp(e): = e1 can be extended to a compression on G(R) of the
form Jp(g) = pgp.
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